Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The weldability of plain and inoculated 6061 aluminum processed with gas metal arc directed energy deposition (GMA-DED) was evaluated and compared to wrought 6061. Autogenous gas tungsten arc welds of varying heat inputs were made, and the degree of solidification cracking was evaluated. The degree of cracking in the inoculated 6061 material was lower than that of plain GMA-DED and wrought 6061. Microstructure characterization revealed that the welds on the inoculated 6061 produced fine, equiaxed grains, whereas the plain 6061 showed coarse, columnar grains. A combination of heat transfer and solidification models were employed to predict the solidification morphology of the 6061 welds, which closely matched the experimental results in all cases. A model was developed to understand the effect of grain morphology on solidification cracking, and it was found that equiaxed grains shifted the critical liquid film range for cracking to lower solid fractions where thermal stresses are the lowest. However, cracking can be caused if sufficient external stresses are applied when the critical liquid film thickness is present during solidification of the equiaxed grain structure. This work provides insight into the role grain size and morphology control can have in suppressing solidification cracking of other aluminum alloys.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Abstract The solidification microstructures of plain and inoculated 6061 aluminum builds manufactured with gas metal arc-directed energy deposition were studied with a combination of models and experiments. Electron back-scatter diffraction (EBSD) showed that the plain 6061 build had large, columnar grains with intergranular solidification cracking, while the inoculated build had a near-equiaxed, fine grain microstructure with no solidification cracks. By combining EBSD and energy dispersive spectrometry, the inoculated build has been shown to have exhibited globular growth while the non-inoculated build displayed a dendritic microstructure. A combination of heat transfer and modified grain morphology models were employed to predict the solidification morphology of the 6061 builds, which closely matched experimental results. A modification is proposed to the criterion marking the transition from globular to dendritic growth that better matches experimental results in this work. The results of this study are expected to provide improved methods to predict solidification microstructure for the development of new materials and processing parameters for additive manufacturing.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Gas metal arc directed energy deposition (GMA-DED) has potential for the power generation industry to reduce both time and cost since larger and more complex part geometries can be constructed compared to the typical subtractive methods. The performance of GMA-DED builds can be influenced by the deposition method, resulting microstructure, and formation of defects or secondary phases in the final component. Previous work in the literature evaluated the mechanical properties of GMA-DED builds for a range of austenitic stainless steels, however there is limited data on the high temperature mechanical behavior. This work evaluated the high temperature creep properties of GMA-DED builds constructed with type 316H, 316L, 316LSi, and 16-8-2 stainless steels at 650 °C, 750 °C and 825 °C. The alloy with longest time to rupture for a given stress varied depending on test temperature. Creep damage accumulation at grain boundaries was observed along with grain boundary precipitates which likely aided in damage accumulation. Evaluating the creep properties with the Larson-Miller parameter showed the majority of results fell within the scatter band of creep performance for wrought 316 alloys, indicating the GMA-DED process may be suitable for use in advanced energy systems.more » « less
-
The performance of a newly developed multiprincipal-element alloy (MPEA) filler metal for brazing of nickel-based superalloys was directly compared to a conventional boron- and silicon-suppressed filler (BSSF) metal. The comparison was demonstrated on an Alloy 600 substrate with a brazing temperature of 1200°C. Single-phase solidification behavior and the absence of boron and silicon in the MPEA led to a joint microstructure devoid of eutectic constituents or brittle phases in brazes employing this filler metal. In the brazes using the conventional BSSF metal, incomplete isothermal solidification and subsequent athermal solidification of the residual liquid resulted in large particles of a chromium-rich boride phase distributed throughout the microstructure. Tensile testing of brazed butt joints at both room temperature and 600°C testing conditions demonstrated that the MPEA joints exhibited total ductility values at least one order of magnitude greater than that of BSSF joints, but they showed comparable yield strengths in both testing conditions. Fractographic assessment confirmed that boride phases nucleated cracks and resulted in brittle failure in the BSSF joints, while the MPEA joints exhibited extensive ductile microvoid coalescence. Fine-scale porosity and oxide inclusions may be the dominant factors limiting the overall ductility observed in the MPEA brazes.more » « less
-
The continued development of metal additive manufacturing (AM) has expanded the engineering metallic alloys for which these processes may be applied, including beta-titanium alloys with desirable strength-to-density ratios. To understand the response of beta-titanium alloys to AM processing, solidification and microstructure evolution needs to be investigated. In particular, thermal gradients (Gs) and solidification velocities (Vs) experienced during AM are needed to link processing to microstructure development, including the columnar-to-equiaxed transition (CET). In this work, in situ synchrotron X-ray radiography of the beta-titanium alloy Ti-10V-2Fe-3Al (wt.%) (Ti-1023) during simulated laser-powder bed fusion (L-PBF) was performed at the Advanced Photon Source at Argonne National Laboratory, allowing for direct determination of Vs. Two different computational modeling tools, SYSWELD and FLOW-3D, were utilized to investigate the solidification conditions of spot and raster melt scenarios. The predicted Vs obtained from both pieces of computational software exhibited good agreement with those obtained from in situ synchrotron X-ray radiography measurements. The model that accounted for fluid flow also showed the ability to predict trends unobservable in the in situ synchrotron X-ray radiography, but are known to occur during rapid solidification. A CET model for Ti-1023 was also developed using the Kurz–Giovanola–Trivedi model, which allowed modeled Gs and Vs to be compared in the context of predicted grain morphologies. Both pieces of software were in agreement for morphology predictions of spot-melts, but drastically differed for raster predictions. The discrepancy is attributable to the difference in accounting for fluid flow, resulting in magnitude-different values of Gs for similar Vs.more » « less
An official website of the United States government
